
JokeR: A Recurrent Joker

Tom Hartvigsen 1 Sanket Gujar 1 Thanh Tran 1

Abstract
Generating jokes is a challenging and understud-
ied task of Natural Language Processing. A
computer that intends and succeeds to generate
jokes could be deemed artificially intelligent. We
present a couple of novel approaches to joke gen-
eration, such as using SeqGAN and a language
model. We implement a variety of word-level
models to tackle parts of the joke-generation
problem, namely text generation and joke clas-
sification. Ideally, merging these steps will al-
low for a model to write joke candidates, that
are then pruned by a well-trained classifier. We
train these models from a corpus of 231,657 user-
written jokes scraped from reddit.com1.

1. Introduction.
Joke generation is a challenging Natural Language Pro-
cessing task as success implies abstract reasoning and an
understanding of societal context. Additionally, jokes can
appear in many formats, such as Knock-Knock, Question-
Answer, or Story-Based. Generating humorous jokes re-
quires a model to accurately predict how funny an observer
will find its text, a task at which many humans often fail.

The contexts and syntax styles present in such differ-
ent joke-types present issues when modeling textual se-
quences. Of the relatively few attempts to generate jokes,
most bypass this challenge by considering only one type of
joke. This type of constraint on the problem dramatically
reduces the complexity, but allows for much more realistic
results. In our work, we do not constrain the joke type, but
instead filter jokes by lengths to avoid other problems.

Text generation has recently received much attention within
Natural Language Processing and Deep Learning. How-
ever, humor is subjective and quantifying success of gener-
ated text is challenging. Typically, text generation is either
empirically qualified or the success of the language model’s
predictions of known sentences is maximized. A metric
such as the BLEU score does not necessarily directly apply
to our setting as one wrong word at the end of a joke could
devalue the entire sequence in some cases. It is difficult to

1https://github.com/amoudgl/short-jokes-dataset

compute what makes a joke a joke in order to minimize a
loss function.

For joke generation, writing readable text is only half the
battle. We equate a machine that writes un-funny “jokes”
that retain some semblance of joke-structure to a three or
four year old who, upon hearing others tell jokes and noting
the reactions of their audience, begins to mimic the syntax
styles of jokes despite their lack of truly humorous content
(e.g. Why did the apple eat a spoon? Yellow!).

We present jokes generated through an Encoder-Decoder
Recurrent Neural Network that learns a language model
using both standard one-hot encoded word representations
and word2vec (Mikolov et al., 2013) as inputs. Addition-
ally, as an attempt to force humor into the model, we imple-
ment a human-in-the-loop topic-based joke generation by
adding a selected topic to the model’s initial state. We also
implement a Sequence GAN to combine the generation and
discrimination tasks. Finally, we train a fully connected
network to classify sentences as either jokes or not-jokes.

We use a corpus of 231,657 jokes written by Reddit users
and show that a language model and GAN can mimic jokes
to some degree and show that joke generation is a challeng-
ing task and the only humor found in our generated jokes
is imposed by the reader.

2. Related Works
(Petrović & Matthews, 2013) presents a model that uses
large amount of unannotated data to generate I like my X
like I like my Y, Z jokes, where X, Y and Z are variables
to be filled in. This was the first fully unsupervised hu-
mor generation system. They assumed X and Y are nouns
and Z is an adjective. They found out the co-occurrence
between x and z and also between y and z in some large
corpus, measured how similar are x and y and obtained a
joint probability for (x,y,z) to occur together.

We took inspiration from Seq2Seq[2] which was a general
end-to-end approach to sequence learning that makes min-
imal assumption on the sequence structure. Their method
used a multi-layered LSTM to map the input sequence to a
vector of fixed dimensionality, then another deep LSTM to
decode the target sequence from the vector.

JokeR: A Recurrent Joker

(Ren & Yang) presented a topic based joke generator,
where the model can generate a short joke relevant to the
topic that the user specifies. They used an encoder for rep-
resenting user-provided topic information and an RNN de-
coder for joke generation. They trained the model on short
jokes corpus of Conan O’Brien. They used POS Tagger to
extract the topic from each sentence. The evaluation was
done by five English speakers and they found their model
to outperform a probabilistic model[1].

Humor generation is hard but is humor classification and
there have been a very few approaches for this too. Dario
and Pascale(Bertero & Fung, 2016) used an LSTM for
predicting humor in dialogues. Their model consisted of
LSTM with utterance encoding from a CNN to model
the sequential context of the dialog. They used popular
TV-sitcom dialogues to train their model by supervised
classification to detect when the punchline occur. They
achieved the F-score of 62.9% while a Conditional Ran-
dom Field(CRF) model achieved 58.1% on the same data.

Most recently, SeqGAN(Yu et al., 2017) was introduced
which is a sequence generation framework. SeqGAN by-
passes the generator differentiation problem by directly
performing gradient policy update, while the data generator
is considered as a stochastic policy. The RL reward comes
from the discriminator judgment on a complete sequence
and is passed back to the intermediate state-action steps us-
ing Monte-Carlo search. Although SeqGAN is only tested
on Chinese poems and random normal distribution.

3. Dataset
We use a set of 231,657 jokes scraped from Reddit’s jokes
and cleanjokes pages (dat). Each joke has at least 10 char-
acters and a maximum of 200 characters. For simplicity,
we only use jokes that have fewer than 20 characters.

4. Methods
4.1. Word Embedding

Word vector are a vector space representation that cap-
tures semantic and syntactic regularities. The most com-
monly used algorithms are Global vector for word repre-
sentation (GloVe) (Pennington et al., 2014) and Word2vec
(Rong, 2014). GloVe is proved to combine advantages
from both count-based methods (LSA, Hellinger-PCA) and
direct prediction methods (Skip-gram and CBOW) and
gives good performance on word similarity tasks.

We trained the GloVe model on our joke corpus for the em-
bedding to particularly capture the word similarities in our
corpus. We kept the size of embedding to be fixed of 300 as
it is mostly referred to capture most amount of information.

We note that the word embeddings do not seem to make
much sense and words we assume to share contexts do not
appear next to one another. This may be due to the fact that
each joke is independent from other jokes, so word contexts
may not be meaningful in this setting.

4.2. Language Model

We implement an Encoder-Decoder Recurrent Neural Net-
work that inputs word sequences, passes them through an
LSTM layer, then attempts to predict the next word. Thus,
the model attempts to learn a low-dimensional and sequen-
tial representation of jokes. We attempt two versions of
this model: first using one-hot encoded representations of
words, and second using word embeddings trained on a
dataset of jokes. Once this model has been trained to ade-
quately predict future words given a current word, we can
sample from the predicted distribution at each time step in
order to generate novel sequences.

4.3. Joke Classifier

Preparing input data: In this task, we use neural network
to build a joke/non-joke classifier. We consider all jokes
in our dataset mentioned in section 3 as positive samples.
However, we are missing negative instances in this case.

In order to obtain negative instances, according to (Ren &
Yang), the news data source can be considered as a good
non-joke data for our classifier since the news and our jokes
datasets both are about daily affairs. Therefore, we started
crawling news headers as non-joke dataset.

We used Reuters as our news data source. 2 stored all days’
news headers. We crawled news headers of 1000 days ()
from current date time to the pass. This results in 183,744
news header.

Before fitting this dataset to train our model. We want to
make sure that the news dataset and the jokes dataset both
share a similar portion of their vocabulary. This is because
if jokes and news datasets share no common vocab, the
model simply just learns the existence of a non-common
word to classify the input text. For example, a news is
about “Syria”, while there is no joke mentioned “Syria”,
the model simply learns if the input text contains “Syria”
then classify as non-joke. Unfortunately, even though we
crawled 183k news header, the percentage of common vo-
cabulary between the news and the joke datasets is very
small. Therefore, we conclude to not use news dataset as
non-joke instances.

There are two other approaches to generate non-joke
datasets: (i) shuffle all words in a joke; (ii) split a joke
into smaller sentences, and each small sentence alone will

2https://www.reuters.com/resources/archive/us/

JokeR: A Recurrent Joker

be a non-joke. We ignore the first approach because it can
train a model that just learns grammar correction. For gen-
erating non-joke data using the second approach, we split
each joke into short sentences by “?”, “,”, “.” separators.
We ignore the jokes not containing those separators. Then
we randomly sample a same amount of jokes.

Building classifier: We propose two classifiers, one
with attention and one without attention. We used
pre-trained word2vec embeddings (GoogleNews-vectors-
negative300.bin) 3. Then we use BiLSTM to encode the
input text. With attention score model,a score function is
simply built by constructing another fully connected layer
that input concatenated output vectors of BiLSTM and pro-
ducing a score. Then the context vector is computed by
sum of hidden vectors multiplied by their attention scores.

4.4. Topic-Based Language Model

Similar to (Ren & Yang) we attempt a topic-based joke
generator by initializing the hidden state of the language
model as a word embedding for a particular topic. In the
training phase, we extract the nouns from each joke and
consider them to be topics. To create a fixed-size vector,
we average the topic vectors if there is more than one. This
assumes that the average of two topic vectors will contain
information from each topic and that topics of jokes have
been successfully mapped into a similar region of the em-
bedding space. For example, we assume that the average of
“donald trump” and “barack obama” will be a word such
as “president” as opposed to a different and random vec-
tor such as “banana”. The intuition behind this approach
is that initializing the first output of the language model
as a combination of a seed word and a topic vector will
influence the model to stick with words surrounding the
assigned topic. Additionally, this would allow for some
human input as to what might make a funny joke. This al-
lows the model to bypass the necessary understanding of
societal context when generating jokes. Similar to the ba-
sic Encoder-Decoded Sequence to Sequence model, in the
testing phase we can sample from the output of the model
at each step and feed that prediction into the next timestep
to generate novel sequences.

4.5. Sequence Generative Adversarial Networks

Given the dataset of short jokes, we trained a θ-
parametrized generative model Gθ to produce the joke se-
quence Y1:T = (y1, y2, y3,, yT) , here yt ∈ γ, where
γ is the vocabulary of the dataset. The problem is inter-
preted as a reinforcement learning problem, where on ev-
ery timesteps t, the state s is the current produced state
and action a is the next token yt to be selected. The pol-

3https://code.google.com/archive/p/word2vec/

icy model Gθ(yt|Y1:t−1) is stochastic, but the state transi-
tion is always deterministic after an action has been chosen.
We also trained discriminator modelDφ to discriminate be-
tween joke and plain text, and also to provide guidance to
the generator Gθ. So Dφ(Y1:T) is a probability indicating
how likely the sequence is a joke or not.

The Discriminator is trained by using positive examples
from the joke dataset and negative sample generated from
the generative model Gθ. The generator Gθ is updated us-
ing policy gradient and MC search on the basis on the ex-
pected reward received from the discriminator Dφ.

We experimented with a very simple RNN models for the
generator and discriminator. The generator was character-
level 3-layered RNN with GRU cells of 128 dimensions
and the output dimension were the total number of dif-
ferent of characters in the dictionary. The input to the
generator was a latent variable sampled from normal dis-
tribution. The generator was trained with teacher forcing
method with the jokes samples for initial timesteps to guide
the generator and later was trained with the help of reward
from the discriminator. The discriminator had the same ar-
chitecture as the generator but with a fully connected net-
work with sigmoid activation at the output to determine the
probability of the sequence being a real joke or not.

5. Results
5.1. Language Model

Our first attempt to generate jokes is via sampling sentences
from a language model trained on 231,657 jokes. After
generating 100 jokes, we hand-picked some jokes that seem
reasonable if not funny: Why did the snowman go to the
Doctor? Assault; What did the vegan pig say? Pig in the
office; What do you call a deer in the office? Spiderman
milk.

Each of these examples is a novel sequence, but seems to
be merging pieces of existing jokes. We note that most
jokes generated in this way are simply sequences of words
that are distantly related to one another and definitely con-
tain no humor. For instance, “What did the blind man fit
in two arms and his pants in quicksand?” has some struc-
ture, but certainly no meaning. However, to a non English-
speaker they may seem like reasonable sentences, and to
a three-/four-year-old who has just discovered jokes, they
may seem as high quality as any joke.

5.2. Topic-Based Language Model

In order to generate topics, we first embed each word into
a 300-dimensional space. However, since the word embed-
dings have little semantic meaning, the Topic-based lan-
guage model did not stick to any particular topics and did

JokeR: A Recurrent Joker

Table 1. RNN Classifier result with and without pre-trained word
embedding

Model Accuracy

pre-trained RNN without attention 95.8%
RNN without attention 89.7%

Table 2. pre-trained RNN Classifier result with and without atten-
tion

Model Accuracy

pre-trained RNN without attention 95.8%
pre-trained RNN with attention 94.3%

not generate meaningful sequences to any degree, with ab-
solutely no sentence structure whatsoever and many re-
peated words, even with lots of training time. This could
be due to meaningless word embeddings in the context of a
language model or the possibly erroneous assumption that
the average word embedding between nouns is an adequate
summarization of multiple topics.

5.3. Joke Classification

In this part, we report the result of RNN classifiers in fol-
lowing cases: (i) Case 1: RNN without attention + pre-
trained word embedding versus RNN without attention; (ii)
Case 2: RNN without attention + pre-trained word embed-
ding versus RNN with attention + pre-trained word embed-
ding; (iii) Case 3: Our best model versus uni-gram Naive
Bayes classifier.

From table 1, we observe that RNN classifier without atten-
tion mechanism works well with pre-trained word embed-
dings, significantly improve the accuracy result by 6.1%.
We see in Table 2 that attention mechanism degrades accu-
racy of our pre-trained RNN classifier by 1.5%. Therefore,
we use pre-trained RNN classifier without attention as our
best model. Then, we compare our best model with uni-
gram features + Naive Bayes classifier as a baseline. Table
3 shows our results. Our proposed model outperformed the
baseline, significantly improves the accuracy by 13.2%.

5.4. SeqGAN

The jokes generated captured the distribution of jokes to
some extent but still they lacked intuition to generate funny
jokes. The model was generating jokes with bar occurring
very frequently. It is possible as the discriminator will be
rewarding the generator for generating jokes with bar, and
the generator might have been stuck in the local minimum.
We assume that using classifier (Section 4.3) that can clas-
sify jokes properly will improve the results by giving ap-
propriate rewards to guide the generator.

The generator also generated jokes with inappropriate
words like sex, condoms etc. which may not be appropri-
ate to common audience as well as it also generated some

Table 3. Our Best RNN classifier with unigram Naive Bayes clas-
sifier

Model Accuracy

pre-trained RNN without attention 95.8%
Naive Bayes classifier 82.6%

racist jokes, which it learned from the dataset.

Some sampled jokes from the generator:

• I was in the bar, but I wasn’t the bartender.

• What do you call a bar, a bar because it was a bar

• What do you call a girlfriend? a child to the bar.

• I was in the bar and the bar says I am not a bar.

6. Evaluation
We told 5 random jokes we generated and from the dataset
to 5 people with different native language as shown in the
table and asked them to evaluate the jokes on a scale of 1-
5. However, as the jokes generated were not very initiative
we told the audience which joke are machine generated.
We averaged the score the rating given to the jokes for each
person.

Person (lang.) Org. Jokes Machine Generated Jokes
P1 (Tamil) 4.0 3.0

P2 (English) 2.6 2.0
P3 (English) 2.4 1.2
P4 (Hindi) 2.8 2.6
P5 (Hindi) 2.6 2.8
Average 2.88 2.51

The jokes generated are close in rating with the original
jokes, but we assume it won’t be the case if the audience
weren’t told the joke is machine generated or not.

7. Conclusions
Jokes generated through our variety of models were not re-
alistic to any degree. The jokes from the encoder-decoder
language model contained no humor while the jokes from
SeqGAN revolved around only a few certain topics, which
could be improved with a better discriminator. Many of
the jokes contained racist or sexual words, which may not
be appropriate to many audiences, so better filtering of the
dataset is essential. The generated jokes got overall sim-
ilar rating to the original jokes, but the participants were
aware which jokes were machine generated. We also built
a joke classifier using BiLSTM and achieved an accuracy
of 95.8%. The generated jokes can be re-verified by this
classifier to produce better jokes.

JokeR: A Recurrent Joker

References
Short jokes. https://www.kaggle.com/
abhinavmoudgil95/short-jokes.

Bertero, Dario and Fung, Pascale. A long short-term mem-
ory framework for predicting humor in dialogues. In
Proceedings of the 2016 Conference of the North Amer-
ican Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, pp. 130–135,
2016.

Mikolov, Tomas, Sutskever, Ilya, Chen, Kai, Corrado,
Greg S, and Dean, Jeff. Distributed representations of
words and phrases and their compositionality. In Ad-
vances in neural information processing systems, pp.
3111–3119, 2013.

Pennington, Jeffrey, Socher, Richard, and Manning,
Christopher. Glove: Global vectors for word representa-
tion. In Proceedings of the 2014 conference on empirical
methods in natural language processing (EMNLP), pp.
1532–1543, 2014.

Petrović, Saša and Matthews, David. Unsupervised joke
generation from big data. In Proceedings of the 51st An-
nual Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), volume 2, pp. 228–
232, 2013.

Ren, He and Yang, Quan. Neural joke generation.

Rong, Xin. word2vec parameter learning explained. arXiv
preprint arXiv:1411.2738, 2014.

Yu, Lantao, Zhang, Weinan, Wang, Jun, and Yu, Yong. Se-
qgan: Sequence generative adversarial nets with policy
gradient. In AAAI, pp. 2852–2858, 2017.

https://www.kaggle.com/abhinavmoudgil95/short-jokes
https://www.kaggle.com/abhinavmoudgil95/short-jokes

