
Maximum Entropy Inverse Reinforcement Learning and

Generative Adversarial Imitation Learning

Sanket Gujar

Worcester Polytechnic Institute, MA, United States

Abstract

Instead of relying on drivers to communicate their intentions, which they
often will not or cannot do, we take the opposite perspective; the navigation
system itself should learn to predict the intentions and future behaviors of the
driver based on past observations and the current situation. One approach
to route prediction is to assume the driver will also try to take this most
expedient route.

Two important applications of this problem are route recommendation,
where a driver requests a desirable route connecting two specified points,
and unanticipated hazard warning, where an application can predict the
driver will encounter some hazard he is unaware of and provide a warning
beforehand so that the hazard can be avoided. We explore the problem of
Imitation learning with two popular approaches: Maximum Entropy Inverse
Reinforcement Learning and Generative Adversarial Imitation Learning and
compare the advantages and drawbacks of each.

Keywords: Inverse Reinforcement Learning, Entropy

1. Literature Survey

1.1. Maximum Entropy Inverse Reinforcement Learning [1]

Uses the principle of Maximum entropy to resolve ambiguity when each
policy can be optimal for reward function, and many policies lead to the same
feature count in IRL and feature matching. Maximize the Log likelihood over
the demonstrations (Expert collected data).

Notations:
τ : Trajectories (s1, a1, s2,sτ)
τD : Trajectories collected from expert.

Preprint submitted to Prof. Yanhua Li January 3, 2019

rθ(τ) : Reward with parameter θ for trajectory τ
The reward of a trajectory is expressed as linearly combinations with

feature counts. r(τ) = θTfτ
The constraint to solve this problem is∑

τ

pτfτ = f

and we have to maximise the log likelihood,

maximise
∑
τ

p(τ) log p(τ)

Now taking Lagrange to solve this optimization problem.

d[−
∑
τ

p(τ) log p(τ)− λ(
∑
τ

pτfτ − f)− µ(
∑
τ

Pτ − 1)] = 0

[−
∑
τ

log p(τ)−
∑
τ

1− λ(
∑
τ

fτ)− µ(
∑
τ

1]d(p) = 0

∑
τ

[log p(τ) + 1 + λ(fτ) + µ]d(p) = 0

letµ+ 1 = λ0

∑
τ

[log p(τ) + λ(fτ) + λ0]d(p) = 0

Since this is zero for all probability distribution, all τ braces should be
zero

log p(τ) + λ(fτ) + λ0 = 0

log p(τ) = −λ0 − λfτ

2

p(τ) = e−λ0e−λfτ

The sum of probabilities should be equal to 1

∑
τ

p(τ) = 1 =
∑
τ

e−λ0e−λfτ

Now we get

e−λ0 =
1∑

τ e
−λfτ

let

Z =
∑
τ

e−λfτ

Z is the Partition Function

e−λ0 =
1

Z

Now, we have the constraint∑
τ

pτfτ = f

Substituting the probability value

f =
1

Z

∑
τ

fτe
−λfτ

When we take derivative of Z

dZ

dλ
= −

∑
τ

e−λfτfτ

Substituting the derivative of Z in the equation

f = − 1

Z

dZ

dλ

3

f = −d logZ

dλ

Now if we solve this we get,

f = f

Principle of Maximum entropy (Jaynes 1957): Probability of a demon-
strated trajectory is proportional to its exponential of reward of the trajec-
tory.

p(τ) ∝ exp(r(τ))

And the objective is to maximise the log likelihood of the demonstrated
trajectories.

θ∗ = argmaxθL(θ) = argmaxθ
1

m

∑
τd∈D

log p(r(τd))

θ∗ = argmaxθ
1

m

∑
τd∈D

log
1

Z
er(τd)

Where Z is the partition function Z =
∑

τ e
r(τ) and m is the total number

of trajectories. So Now,

θ∗ = argmaxθ
1

m

∑
τd∈D

(r(τd)− logZ)

Taking the derivative of the objective function as it is convex:

dL(θ)

dθ
=

1

m
(
∑
τd

dr(τd)

d(θ)
− 1∑

τ e
r(τ)

∑
τ

er(τ) r(τ)

θ
)

Now here if we take the summation inside we get

p(τ) =
er(τ)∑
τ e

r(τ)

4

dL(θ)

dθ
=

1

m
(
∑
τd

dr(τd)

d(θ)
−
∑
τ

p(τ)
dr(τ)

dθ
)

We can change the trajectory with the states, we get

dL(θ)

dθ
=

1

m
(
∑
s∈τd

dr(sd)

d(θ)
−
∑
s∈τ

p(s|θ, T)
dr(s)

dθ
)

This equations hold for any dimension of reward function,
But for Linear reward function : r(τ) = θfτ
So, dr(τ)

dθ
= fτ

So Now the equations becomes for linear reward function,

dL(θ)

dθ
= f −

∑
s∈τ

p(s|θ, T)

m
fs

Here
∑

s∈τ
p(s|θ,T)

m
is the state visitation which cab be denoted by Ds. So

now the derivative reduces to

dL(θ)

dθ
= f −

∑
s∈τ

Dsfs

We can use Dynamic Programming to calculate the state visitation fre-
quency for the given optimal policy π(a, s) and the transition matrix Psa(s

′).
We can use µt to denote the probability of visiting state s at time t.

for t = 1,2,.....,T.

µt+1(s) =
∑
a

∑
s′

µt(s
′)π(a, s′)Psa(s

′)

and,

P (s) =
∑
t

µt(s)

The algorithm solves MDP in each iteration of training and assumes
known dynamics but it can scale to non-linear cost for neural networks.

Algorithm

5

1. Initialize θ, gather demonstration D

2. Solve for Optimal policy π(a, s) w.r.t reward r(τ)

3. Solve for state visitation frequency p(s|θ)
4. Compute the gradient ∇θL = − 1

m
(
∑

s∈τd
dr(sd)
d(θ)

+
∑

s∈τ p(s|θ, T)dr(s)
dθ

)

5. Update θ with one gradient step using ∇θL

6. Repeat from step 2

Unknown Dynamics and Continuous Space (Sampling) [2]
Important Sampling

∑
τs∼q

er(τs)

q(τs)

To choose the distribution we can sample from, we need minimum vari-
ance of the estimator.

minvar : q(τ) ∝ |er(τ)|

So now the objective can be defined as,

q = argmaxqEq[r(τ)]−H(q)

We can use mixture sampling for various optimal distribution of q

v(τ) =
1

k

∑
k

qk(τ)

So now the Objective function becomes,

θ∗ = argmaxθ
1

m

∑
τd∈D

(r(τd)− log
∑
τs

er(τs)

v(τ)
)

1.2. A Connection Between Generative Adversarial Networks,Inverse
Reinforcement Learning, and Energy-Based Models (Finn et
Al. 16) [3]

Demonstrate an equivalence between a sample based algorithm for max-
imum entropy IRL [1] and a GAN [4] in which the generator density can be
evaluated and is provided as an additional input to the discriminator.

6

For a fixed generator with a density q(τ), and actual data distribution
p(τ) the optimal discriminator is as follows,

D∗(τ) =
p(τ)

p(τ) + q(τ)

When the generator density q(τ) can be evaluated, the discriminator can
be modified to only can estimate the value of p(τ). In this case the discrim-
inator modifies to

Dθ(τ) =
pθ(τ)

pθ(τ) + q(τ)

To make a connection to MaxEnt IRL we can replace the estimated data
density with the Boltzmann distribution. Now we the discriminator’s output
is,

Dθ(τ) =
1
Z
e−cθ(τ)

1
Z
e−cθ(τ) + q(τ)

The Discriminator Loss is

Ldiscriminator(Dθ) = Eτ∼p[− logDθ(τ)] + Eτ∼q[− log 1−Dθ(τ)]

Ldiscriminator(Dθ) = Eτ∼p[− log
1
Z
e−cθ(τ)

1
Z
e−cθ(τ) + q(τ)

] + Eτ∼q[− log
q(τ)

1
Z
e−cθ(τ) + q(τ)

]

We can write the objective of Maximum entropy IRL as,

Lcost(Dθ) = Eτ∼p[cθ(τ)] + log(Eτ∼ 1
p

+ 1
q
[

e−cθ(τ)

1
2
p(τ) + 1

2
q(τ)

])

We will substitute p(τ) = pθ(τ) = 1
Z
e−cθ(τ), as we are using the current

model to estimate the importance weights.

Lcost(Dθ) = Eτ∼p[cθ(τ)] + log(Eτ∼µ[
e−cθ(τ)

1
2Z
e−cθ(τ) + 1

2
q(τ)

])

7

The value of Z which minimizes the discriminator’s loss is an importance-
sampling estimate for the partition function, so the derivative of the discrim-
inator’s loss w.r.t θ is equal to derivative of MaxIRL objective.

When θ and Z are optimized, 1
Z
e−cθ(τ) is an estimate for the density of

p(τ). Let µ = p
2

+ q
2

be the mixture distribution over trajectory. So we can
write

µτ =
1

2Z
e−Cθ(τ) +

1

2
q(τ)

So Now the discriminators loss becomes,

Ldiscriminator(Dθ) = Eτ∼p[− log
1
Z
e−cθ(τ)

2µτ
] + Eτ∼q[− log

q(τ)

2µτ
]

Ldiscriminator(Dθ) = logZ + Eτ∼p[cθ(τ)] + 2Eτ∼p[log 2µ(τ)]− Eτ∼q[log q(τ)]

To Find the minimum value of Z, we will take the derivative of Loss w.r.t
Z will be 0.

dLdiscriminator(Dθ)

dZ
=

1

Z
+ 2Eτ∼µ[

1

2µ(τ)

2dµ(τ)

dZ
] = 0

dLdiscriminator(Dθ)

dZ
=

1

Z
+ 2Eτ∼µ[

1

µ(τ)

−1

Z2
e−cθ(τ)] = 0

1

Z
= 2Eτ∼µ[

1
Z2 e

−cθ(τ)

µ(τ)
]

Z = 2Eτ∼µ[
e−cθ(τ)

µ(τ)
]

Now if we differentiate the equation w.r.t to θ,

8

dLdiscriminator(Dθ)

dθ
= Eτ∼p[

dcθ(τ)

dθ
]− Eτ∼µ[

1
Z
e−cθ(τ) dcθ(τ)

dθ

µτ
]

Now if We differentiate the MaxIRL objective,

Lcost(Dθ) = Eτ∼p[cθ(τ)] + log(Eτ∼µ[
e−cθ(τ)

1
2Z
e−cθ(τ) + 1

2
q(τ)

])

dLcost(Dθ)

dθ
= Eτ∼p[

dcθ(τ)

d(θ)
] +

d

dθ
log(Eτ∼µ[

e−cθ(τ)

µ(τ)
])

dLcost(Dθ)

dθ
= Eτ∼p[

dcθ(τ)

d(θ)
] +

Eτ∼µ[−e
−cθ(τ)

µ(τ)

dcθ(τ)
d(θ)

]

Eτ∼µ[e
−cθ(τ)

µ(τ)
]

Now Z = Eτ∼µ[e
−cθ(τ)

µ(τ)
]

dLcost(Dθ)

dθ
= Eτ∼p[

dcθ(τ)

d(θ)
]− Eτ∼µ[

1
Z
e−cθ(τ)

µ(τ)

dcθ(τ)

d(θ)
]

Which is exactly equal to the discriminator loss we derived above.
Now if we go to see the generators loss,

Lgenerator(q) = Eτ∼q[log(1−D(τ))− log(D(τ))]

Lgenerator(q) = Eτ∼q[log(
q(τ)

µ(τ)
)− log(

1
Z
e−cθ(τ)

µ(τ)
)]

Lgenerator(q) = Eτ∼q[log q(τ)] + logZ + Eτ∼q[cθ(τ)]

We know,

Lsampler(q) = Eτ∼q[log q(τ)] + Eτ∼q[cθ(τ)]

Lgenerator(q) = logZ + Lsampler(q)

The term log Z is kept as a fixed parameter of the discriminator while
optimizing the generator.

9

1.3. Generative Adversarial Imitation Learning (Jo & Ermon) [5]

Derives a model-free imitation learning algorithm which uses generative
adversarial training to fit distributions of states and actions defining expert
behavior. Uses maximum casual entropy IRL [1] which fits a cost function
C with the optimization problem

Harnesses generative adversarial training to fit the distribution of states
and actions defining expert behavior.

Max. Entropy IRL
for a cost function c ∈ C that assign low cost to expert policy and high

cost to other policies. It finds the expert policy via a certain reinforcement
learning procedure which maps a cost function to high-entropy policies that
minimizes the expected cumulative cost.

RL(c) = argminπ −H(π) + Eπ[c(s, a)]

The IRL can easily overfit when provided a finite dataset when it has
a large environment with its capabilities C = RS×A. So we incorporate a
convex cost function regularizer ψ : RS×A → R

Now the IRL cost function with the cost regularized by ψ becomes,

IRLψ(πE) = argmaxc∈RS×A − ψ(c) + (minπ∈Π −H(π) + Eπ[c(s, a)])− EπE [c(s, a)]

Let c ∈ IRLψ(πE) RL(c) is the policy given by running reinforcement
learning on the output of IRL.So a policy occupancy measure can be given
as pπ(s, a) = π(a, s)

∑∞
t=0 γ

tP (st = s|π). The occupancy measure can be
interpreted as the unnormalized distributions of state-action pairs that an
agent encounters while navigating the environment.

In reality, the expert trajectory will be provided only as finite set of
samples, so in large environments, most of the expert’s occupancy measure
will be small, and exact occupancy measure matching will force the learned
policy to rarely visit these unseen state-action pair simply to lack of data.

The Regularizer
The problems with regularizers are :

• Constant regularizer leads to an imitation learning that exactly matches
occupancy measures but intractable in large environments.

• The indicator regularizers [6] leads to an algorithm incapable of exactly
matching without careful tuning, but tractable in large environments.

10

The proposed cost regularizer combines the both objective:

ψGA(c) ,

{
EπE [g(c(s, a))] if c < 0

+∞ otherwise

where,

g(x) =

{
−x− log (1− ex) if x < 0

+∞ otherwise

Figure 1: Plot of g(x)

The regularizer places low penalty on cost functions c that assigns an
amount of negative cost to expert state-action pairs. If c however assigns
large cost (close to zero) to the expert then ψGA will heavily penalize c.

ψGA(pπ − pπE) = supD∈(0,1)s×AEπ[log(D(s, a))] + EπE [log(1−D(s, a))]

11

derivation
we have to convert surrogate loss function φ for binary classification state-

action pair drawn from the occupancy measure pπ and pπE , into cost regular-
izers ψ, for which ψ∗(pπ − pπE) is the minimum expected risk Rφ(pπ − pπE)
for φ

Rφ(π, πE) =
∑
s,a

min
γ∈R

pπ(s, a)φ(γ) + pπE(s, a)φ(−γ)

So it can generate any imitation learning algorithm that minimizes an
f-divergence between occupancy measures, as long as that f-divergence is
induced by a strictly decreasing convex surrogate φ

We are assuming φ to be convex. Let T be the range of -φ.

g(x) =

{
−x− φ(−φ−1(−x)) if x ∈ T

+∞ otherwise

and

ψφ(c) =

{ ∑
s,a pπE(s, a)gφ(c(s, a)) if c(s, a) ∈ T for all s,a

+∞ otherwise

and

RL(IRLψφ(πE)) = argmin
π
−H(π)−Rφ(pπ, pπE)

Now

ψ∗(pπ, pπE) = max
cinC

∑
s,a

(pπ(s, a)− pπE(s, a))c(s, a)−
∑
s,a

pπ(s, a)gφ(c(s, a))

ψ∗(pπ, pπE) = max
cinC

∑
s,a

(pπ(s, a)− pπE(s, a))c(s, a)−
∑
s,a

pπ(s, a)[−c+ φ(−φ−1(−c))]

ψ∗(pπ, pπE) = max
cinC

∑
s,a

(pπ(s, a))c(s, a)−
∑
s,a

pπ(s, a)(φ(−φ−1(−c)))

12

We put c(s, a)→ −φ(γ)

ψ∗(pπ, pπE) = max
cinC

∑
s,a

(pπ(s, a))(−φ(γ))−
∑
s,a

pπ(s, a)(φ(−φ−1(φ(γ))))

ψ∗(pπ, pπE) = max
cinC

∑
s,a

(pπ(s, a))(−φ(γ))−
∑
s,a

pπ(s, a)(φ(−γ))

ψ∗(pπ, pπE) = −Rφ(pπ, pπE)

Here we obtained a corollary, a cost function regularizer for the logistic
loss, whose optimal expected risk is, up to a constant, the Jensen-Shannon
divergence.

Using the logistic loss φ(x) = log(1 + e−x) So Now,

ψ∗(pπ, pπE) =
∑
s,a

max
γ

(pπ(s, a))(− log(1 + e−γ))−
∑
s,a

pπ(s, a)(log(1 + eγ))

ψ∗(pπ, pπE) =
∑
s,a

max
γ

(pπ(s, a))(log(
1

1 + e−γ
)) +

∑
s,a

pπ(s, a)(log(
1

1 + eγ
))

ψ∗(pπ, pπE) =
∑
s,a

max
γ

(pπ(s, a))(log(
1

1 + e−γ
)) +

∑
s,a

pπ(s, a)(log(1− 1

1 + e−γ
))

Where the sigmoid function σ(x) = 1
1+e−x

has range of (0,1)

ψ∗(pπ, pπE) =
∑
s,a

max
γ

(pπ(s, a))(log(σ(γ)) +
∑
s,a

pπ(s, a)(log(1− σ(γ)))

ψ∗(pπ, pπE) =
∑
s,a

max
d∈(0,1)

(pπ(s, a))(log(d)) +
∑
s,a

pπ(s, a)(log(1− d))

ψ∗(pπ, pπE) = max
D∈(0,1)(s,a)

∑
s,a

(pπ(s, a))(log(D(s, a)) + pπ(s, a)(log(1−D(s, a)))

which is the desired equation.
The observation from the equation are:

13

• The equation is proportional to the optimal negative log loss of the
binary classifier problem of distinguishing between state-action pair of
π and πE.

• Optimal loss is up to a constant shift and scaling the Jensen-Shannon
divergence DJS(pπ, pπE) = DKL(pπ||(pπ + pπE)/2) + DKL(pπE ||(pπ +
pπE)/2)

Now treating the casual entropy H as a policy regularizer controlled by
λ >= 0 we get the objective

minimizeπψ
∗
GA(pπ − pπE)− λH(π) = DJS(pπ, pπE)− λH(π)

which finds a policy whose occupancy measure minimizes Jensen-
Shannon divergence to the expert’s policy.

Algorithm The equation draws a connection between imitation learn-
ing and generative adversarial network. The learner’s occupancy measure
pπ is analogous to the data distribution generated by G, and the expert’s
occupancy measure pπE is analogous to true data distribution.

GAIL

1. Input : Expert trajectories τE ∼ πE, initial policy and discriminators
policy θ0, w0

2. for i in range (no.iterations) do

3. Sample trajectories τi ∼ πθi
4. Update the discriminator from wi to wi+ 1 with the gradient

Eτi [∇w log(Dw(s, a))] + EτE [∇w log(1−Dw(s, a))]

5. Take a policy step from θi to θi+1 using the TRPO rule with the
cost function log(Dwi+1

(s, a)) Specifically take a KL-constrained natu-
ral gradient step with,

Eτi [∇θ log(πθ(a|s)Q(s, a)]− λ∇θH(πθ)

where Q(s’,a’) = Eτi [log(Dw(s, a))|s0 = s′, a0 = a′]

6. End for

Role of TRPO[7] : Prevents the policy from changing too much due to
noise in the policy gradients.

14

2. Experiments

The experiments were carried out in Gridworld (discrete) and Cartpole
(continous) environment.

2.1. Gridworld

The environment has discrete states and discrete actions. The gridsize is
variable, but was fixed to 20 due to limit of computational capacity.

The result of recovered reward function by Maximum Entropy Inverse
reinforcement learning can be seen in figure 2. Here, we can see the Max-
imum entropy IRL recovered the exact cost function as the expert, but it
is a problem when we scale to large environment, when the agent enter an
unseen state before it will take improper actions. MEIRL fits the exact re-
ward function but we need to experiment more for larger environments and
continuous states.

The result of recovered reward function by Generative Adversarial Imi-
tation learning can be seen in figure 3. Here, we can see the GAIL didn’t
recover the exact cost function as the expert, so it will be also scale to large
environment. So, when the agent enter an unseen state, it will not take im-
proper actions. GAIL doesn’t fits the exact reward function but we need
to experiment more for larger environments and continuous states. Also the
value near the start states are unexplainable. We assume that the network
might have learned a symmetric function which gave high value to the start
and goal position. It may also be that the GAN would be ineffective to
sample discrete states.

Distributed reward Gridworld
The result of recovered reward function by Generative Adversarial Imi-

tation learning for continuous reward can be seen in figure 4. The value
near the top-left states are unexplainable. We assume its due to unexplored
states of the expert agent. The expert’s policy takes the boundary path to
the left and to the top, which was captured by GAIL with regularization.
Although it was not able to assign high value to the goal positions.It may
also be that the GAN would be ineffective to sample discrete states. We need
to experiment more with GAIL for distributed reward with a robust optimal
expert policy.

2.2. Cartpole

The Cartpole environment (figure: 5) was used to test Generative Ad-
versarial Imitation Learning on continuous state space. In the environment

15

Figure 2: Maximum Entropy Inverse Reinforcement Learning (Gridworld) : a) The actual
reward function b) Maximum Entropy Inverse Reinforcement Learning recovered reward

a pole is attached by an un-actuated joint to a cart, which moves along a
frictionless track. The system is controlled by applying a force of +1 or -1
to the cart. The pendulum starts upright, and the goal is to prevent it from
falling over. A reward of +1 is provided for every timestep that the pole
remains upright. The episode ends when the pole is more than 15 degrees
from vertical, or the cart moves more than 2.4 units from the center.

For the experiment, a expert policy was trained on Cartpole environment
using Proximal Policy Optimization(PPO)[8], once the expert was trained,
the state and action of the expert were captured. For training GAIL, a agent
policy (generator) was defined similar to the trained policy. The discrimina-
tor was trained using positive samples from the expert demonstrations and
the negative sample from the generator state action pair. The generator was
trained using Proximal Policy Optimization from the reward he received from

16

Figure 3: Generative Adversarial Imitation Learning(Gridworld) : a) The actual reward
function b) Generative Adversarial Imitation Learning recovered reward

the discriminator, as how close it policy was to the expert’s policy. The role
of Proximal Policy Optimization is just to avoid policy changing too much
due to noise in policy gradients. GAIL was able to recover the expert policy
in the continuous state space (figure 6, 7).

3. References

[1] B. D. Ziebart, A. L. Maas, J. A. Bagnell, A. K. Dey, Maximum entropy
inverse reinforcement learning., in: AAAI, volume 8, Chicago, IL, USA,
pp. 1433–1438.

[2] C. Finn, S. Levine, P. Abbeel, Guided cost learning: Deep inverse optimal
control via policy optimization, in: International Conference on Machine
Learning, pp. 49–58.

17

Figure 4: Generative Adversarial Imitation Learning(Distributed reward Gridworld) : a)
The actual reward function b) Generative Adversarial Imitation Learning recovered reward

[3] C. Finn, P. Christiano, P. Abbeel, S. Levine, A connection between gen-
erative adversarial networks, inverse reinforcement learning, and energy-
based models, arXiv preprint arXiv:1611.03852 (2016).

[4] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, Y. Bengio, Generative adversarial nets, in: Ad-
vances in neural information processing systems, pp. 2672–2680.

[5] J. Ho, S. Ermon, Generative adversarial imitation learning, in: Advances
in Neural Information Processing Systems, pp. 4565–4573.

[6] P. Abbeel, A. Y. Ng, Apprenticeship learning via inverse reinforcement
learning, in: Proceedings of the twenty-first international conference on
Machine learning, ACM, p. 1.

18

Figure 5: Cartpole environment (OpenAI gym)

Figure 6: Generative Adversarial Imitation Learning (Cartpole) :Episode lenght (red:
Agent policy, blue: GAIL)

[7] J. Schulman, S. Levine, P. Abbeel, M. Jordan, P. Moritz, Trust region
policy optimization, in: International Conference on Machine Learning,
pp. 1889–1897.

[8] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov, Proximal
policy optimization algorithms, arXiv preprint arXiv:1707.06347 (2017).

19

Figure 7: Generative Adversarial Imitation Learning (Cartpole) :Episode reward (red:
Agent policy, blue: GAIL)

20

