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Abstract— One of the challenges faced by Autonomous Aerial
Vehicles is reliable navigation through urban environments.
Factors like reduction in precision of Global Positioning System
(GPS), narrow spaces and dynamically moving obstacles make
the path planning of an aerial robot a complicated task. One of
the skills required for the agent to effectively navigate through
such an environment is to develop an ability to avoid collisions
using information from onboard depth sensors. In this paper, we
propose Reinforcement Learning of a virtual quadcopter robot
agent equipped with a Depth Camera to navigate through a
simulated urban environment.

I. INTRODUCTION

In recent years, Quadcopters have been extensively used
for civilian task like object tracking, disaster rescue, wildlife
protection and asset localization. It presents interesting ap-
plication avenues especially in tasks such as automated mail
delivery system, fire protection and disaster management.
However, quadcopter navigation through urban environments
is a complex task because of frequent dynamic obstacles
(Humans, Posters, etc.). Also, the GPS navigation system
can perform poorly when surrounded by tall buildings in
urban environment, dilating the precision of the 3D position
fix. It becomes more dangerous when the quadcopter is
flying through tight spaces and is uncertain of its position,
increasing the chances of collision. The quadcopter also
needs to take smart action after detecting dynamic obsta-
cles (Humans, Vehicles, animals, traffic signals etc.) during
navigation in runtime in urban environment. Traditionally,
obstacle avoidance techniques have been designed as end
point solution in an aerial robot navigation. One of the
promising approach for this problem is deep reinforcement
learning. In this paper a simple model is developed for the
task of detecting and avoiding common civilian obstacles
encountered by a quadcopter while navigating a path in an
urban environment.

From the reinforcement learning view, the main challenge
here is that, the policy should update itself during runtime for
stochastic obstacles detected in the environment and take the
optimal action accordingly. Also, the navigation problem has
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sparse distributed reward in state space which is a challenge
for learning the shortest distance.

The objective of this project is to train a quadcopter
to navigate without hitting obstacles and taking a shortest
path around through a high-rise urban environment where
stochastic and dynamic obstacles are frequent.

The organization of the paper is as follows: Section I
provides a general introduction to the challenges for quad-
copter urban navigation. Section II provides a prerequisites
required to understand the experiments. Section III defines
the problem outlining the agent used and the environment.
Section IV gives a brief description about the AirSim sim-
ulator, while section V defines the solution approaches for
the problem defined. Section VI describes the experiments
and training and testing arena used. Section VII discusses
the results for the experiments, while section VIII describes
the future attempt that can be made and section IX describes
the challenges faced during the experiments.

II. PREREQUISITES

A. Quadcopter control

A quadcopter is a simple aerial vehicle comprised of a
rigid square frame with four rotors at the vertices of the
frame. Each of the four rotors is controlled by a single motor
which controls the rpm of the rotor and essentially the lift
that the particular rotor generates. The spin of the rotors is
chosen such that the diagonally opposite rotors spin in same
direction and the adjacent rotors spin in opposite direction
to each other. Thus, all the four rotors contributes to two
inputs:

1) Lift force: By the virtue of the thrust generated by the
propellers on the rotors

2) Torque: by the virtue of the spin of the rotors. Hence,
in a hover state, the total lift generated by all four
rotors is equal to the weight of the quadcopter and
the net torque exerted on the quadcopter frame by all
four rotors is zero (because of the spin of the adjacent
rotors).

The position (x, y, z) and orientation (roll, pitch, yaw) of the
quadcopter can thus be controlled by just varying the rpm
of each of its rotors. For example, if the quadcopter has to
move forward, it has to pitch down by reducing the rpm of
its front rotors while increasing the rpm of its hind rotors. It
is worth noting that a quadcopters yaw angle is independent
of its flight velocity. Thus, the quadcopter can face in any
direction while executing any lateral velocity.



B. Q Learning

Q learning is a value-based learning algorithm for rein-
forcement learning. It is an off policy learning method where
the state-action values are iteratively bettered by applying
discounted Bellman equation [6]. An Optimal Policy is one
by following which, the agent can maximize its long running
reward. Q learning updates the action values using temporal
error. The update step can be expressed as:

Q(s,a) = Q(s,a)+α(Qe(s,a)−Q(s,a))......(1)

where,

Qe(s,a) = R(s)+ γ maxa(Q(s′,a))......(2)

Where,
α is the Learning Rate
γ is the Discount Factor
s is the Current State
a is the Action taken from the current state
s is the state following the action a from state s
and R(s) being the immediate reward for state s.
As Q Learning is based on temporal error, it has a

high bias and also faces the problem of overestimation as
estimation and update are simultaneously carried out on a
single function mapping. Hence, enhanced approaches based
on Q learning like Double Q learning are often preferred.

C. Off-Policy vs On-policy Reinforcement Learning

Reinforcement learning algorithms can be generally char-
acterized as off-policy where they employ a separate target
behavior policy that is independent of action policy being
improved upon. The benefit of this separation is that the
target behavior policy will be more stable by sampling all
actions, whereas the action estimation policy can be greedy,
thus reducing the bias. Q learning is an off-policy algorithm
as it updates the Q values without making any assumptions
about the actual policy followed. In contrast, On-policy
directly uses the policy that is being estimated to sample
trajectories during training.

D. Model Free Algorithms

Model-free algorithms are used where there are high-
dimensional state and action spaces, where the transition
matrix is incredibly expensive to compute in space and
time [4]. Model-free algorithms makes no effort in learning
the dynamics that governs how an agent interacts with
the environment. It directly estimates the optimal policy or
optimal value function by policy iterations or value iterations.
However, model-free algorithms needs a large number of
training examples for accurate policy approximations [7].

E. Deep Q Learning

Deep Q Learning uses Deep Neural Networks which take
the state space as input and output the estimated action value

for all the actions from the state. The target action value
update can be expressed as:

Q(s,a) = R(s)+ γ max
a

(QP(s,a))

Where, QP is the network predicted value for the state s.
After convergence, the optimal action can be obtained by
selecting the action value corresponding to the maximum Q
value.

An enhancement employed for better convergence of this
method is the use of experience buffer. This buffer records
the states, actions and associated rewards from the agents
experience and occasionally trains the Q network with this
buffer to retain the former experience. This buffer itself is
updated with the training epochs to keep the experience
buffer updated.

F. Double DQN

Deep Q Learning suffers from overestimation as it involves
choosing a maximum Q value which may contain non
uniform noise. This will slow down learning as the agent
spends more time exploring non optimal states. A solution
to this problem was proposed by Hado van Hasselt (2010)
and called Double Q-Learning [2]. In this algorithm, two
Q functions are independently learned: one function (Q1) is
used to determine the maximizing action and second (Q2) to
estimate its value. Either Q1 or Q2 is randomly updated by:

Q1(s,a) = r+ γQ2(s,max
a

(Q1(s′,a))

Or,

Q2(s,a) = r+ γQ1(s,max
a

(Q2(s′,a))

III. PROBLEM DEFINITION

Quadcopter navigation through urban environments is a
complex task because of frequent stochastic obstacles, and
the poor accuracy in GPS navigation system when sur-
rounded by tall buildings in urban environment due to pre-
cision dilation. The problem is particularly dangerous when
the quadcopter is navigating through tight spaces and it is
uncertain of its position, increasing the chances of collision.
The quadcopter also needs to take smart action to detect and
avoid stochastic obstacles like buildings, humans, vehicles,
animals, traffic signals etc. in real time while parallel running
a navigation task [3][4]. The agent will be provided with a
starting point and a goal location, the agent will also be
provided with inputs from the front centered camera to take
intelligent navigation decisions [5]. We need the agent to
navigate the environment safely from start point to the target
without colliding into obstacles in the path. Here the state
space is continuous while the action space is discrete.

IV. AIRSIM SIMULATOR

Airsim [1] is an open-source platform aiming to narrow
the gap between simulations and reality in order to aid
development of autonomous vehicles. It is built on Unreal
Engine that offers physically and visually realistic simulation
for collecting a large amount of annotated data in a variety



of conditions and environments. It includes a physics engine
that can operate at a high frequency for real-time-hardware-
in-the- loop (HITL) simulations with support for popular
communication protocols like MavLink [10].

Airsim also provides access to control the quadcopter in
computer vision mode, where the physics engine is disabled
and there is no flight controller active.

Airsim can be interfaced with opensource autopilot hard-
ware such as PX4 Autopilot [11] and Ardupilot Controller
[12]. This allows reinforcement learning algorithms to be
trained in simulation and validated against the realistic sensor
data in real world.

A. Vision API and Camera choices

Airsim provides 6 image type which are Scene, depth-
planner, depth-perspective, depth-vis, disparity-normalized,
segmentation and surface-normal. The camera ID 0 to 4
corresponds to center front, left front, right front, center
downward and center rear respectively. The image type and
camera can be easily configured using the vision API calls
or using the setting json files for capturing training images.

B. Collision Detection

Unreal engine offers a rich collision detection system
optimized for different classes of collision meshes. Airsim
receives the impact position, impact normal vector and
penetration depth for each collision that occurred during
the rendering interval. Airsim Physics engine uses this data
to compute the collision response with Coulomb friction to
modify both linear and angular kinematics.

The collision information can be obtained using getColli-
sionInfo API. This call returns an object that has information
not only whether collision occurred but also collision posi-
tion, surface normal and penetration depth.

Fig. 1. AirSim Simulator View

V. SOLUTIONS

A. Agent Description

In every episode, our quadcopter agent will be spawned in
the simulated environment at the start point. The goal of our
quad agent is to reach the target location without colliding
into obstacles in the path. Here the state space is continuous
while the action space, comprising of the 5 yaw rates and
a fixed forward velocity, is discrete. We chose to implement

DQN to assist quadcopter to make intelligent decision for
avoiding obstacles and reaching the target location as quickly
as possible.

The quadcopter is equipped with a single front facing
depth camera where each pixel value corresponds to the
actual depth distance of the surroundings. We chose depth
cameras over standard RGB cameras to avoid artifacts due
to lighting conditions in the surroundings.

There were a few key challenges faced in controlling
our virtual quadcopter agent. We wanted the quadcopter to
always face the direction of its forward velocity to place
the oncoming obstacles on the front cameras field of view.
Therefore, it was necessary to change the yaw angle of the
quadcopter to the angle of its velocity vector.

The physics engine employed by AirSim uses stochastic
flight controllers. Thus, all the actions commanded by our
learning algorithm were executed with a certain degree on
simulated noise in the simulator.

B. Learning Architecture
Since our state space is huge, it becomes imperative to

use function approximation to plausibly solve the task of
collision free navigation. Deep neural networks are good
candidates for this purpose. Furthermore, when coupled
with Convolutional Neural Networks, we can directly feed
in camera images to the networks to visually learn the
navigation task [8].

Our DQN consist of 4 convolutional layers and 2 dense
layers with the output layer of the dimension as the action
space. DQN is feed a Depth Perspective image from the
center front camera of the quadcopter. We get depth image
from center camera by ray tracing each pixel. The resolution
of the depth image is 84x84.

The convolutional layers can be thought of as feature
extractors. The extracted features are then fed to the dense
layers which act as regression mechanism. The resulting
trained network maps a depth image to the corresponding
action to avoid collisions and while navigating to the goal.

The quadcopter is given a constant velocity in the forward
direction and there are 5 yaw-rate of (-10, -5, 0, 5, 10)
degrees.

C. Reward Function
Reward is defined as a function of how far the quadcopter

is from the goal position and how far it is from the line
joining start and goal position. We consider the episode to
terminate if the quadcopter drifts too much from the start and
goal position joining vector, if it goes away from the goal
beyond a fixed threshold or it collides in the environment.
We also constrain the number of time steps which increases
linearly with episodes.

We observed that the quadcopter takes random actions
in the early episodes that sometimes makes it move in
only small area, so not exploring the complete environment
as well as not hitting any obstacles or moving towards/
away from the goal position, so we decided to terminate
the episodes if it reaches the maximum action steps which
increases linearly with episode count.



VI. EXPERIMENTS

In order for a safe autonomous flight the quadcopter
shouldnt collide with any obstacles and should make intel-
ligent decisions, like changing route for avoiding collisions.
In this section, the experiments are arranged to illustrate
a quadcopter with the mission of reaching goal position
without colliding and taking minimum time. During the flight
the quadcopter constantly monitors the environment with
the depth-perspective image obtained from the center- front
camera.

The quadcopter also needs to reach the goal within a
defined action steps, so it also need to learn to optimize
its path to do so.

In order to represent the discussed scenarios, we came
up with two environments which are Blocks and custom
designed Wobbles training arena as shown in figure 4 and 5.

A. Blocks Training arena

The Blocks training arena is a rectangular shaped arena
with movable blocks spread across the arena. The blocks in
the environments can be moved and the arrangements can be
customized according to the requirements. The blocks arena
was designed to simulate simple construction structures like
buildings road squares.

Primitive Training: Initially, the agent was trained with no
goal position, so its reward was only dependent on collisions.
The approach was to teach the quadcopter to just avoid
obstacles. The agent starts at the initial position and is free
to explore the environment.

Testing and improving: The Initial position was kept fixed
at the center of the environment. The goal position were
varied to let the model to observe if it can avoid obstacles
in any given scenarios, like cutting the edge of obstacles in
front, as well as in side of the cameras field of view. The
first few episodes were taken by the quadcopter to learn the
direction towards the goal position, the rest steps were taken
to avoid the obstacles encountered between the initial to goal
state. The quadcopter collided during some initial episodes
but later learned deflect itself from the edges. However, it
was still sometimes colliding, if it approaches the obstacles
from the center where there is not enough space for it to
maneuver out of the oncoming obstacle. This behavior is
reflected in the results where we can observe sudden drops
in average rewards.

B. Wobbles Training arena

The Wobbles arena has multiple isolated training grounds
designed to train the quadcopter on different tasks. The
Zone A trains the agent to avoid cylindrical obstacles like
pillars, lamp posts, etc. The Zone B trains the agent to
maneuver around short walls. The Zone C is meant for
sharp turn training. The last Zone D is designed to test the
performance of the initial evasion training and also train for
highly congested environments. The obstacles in all the zones
can be moved dynamically to train for dynamic obstacles.

Primitive Training: Initially, the agent is trained with
the most basic obstacles to learn the baseline policies for

Fig. 2. Blocks Training Arena

Fig. 3. Blocks Training Arena Top view

avoiding collisions. The agent is placed at one end and is
expected to go around this obstacle (be it a short wall or a
cylinder) to successfully complete the task.

Testing and improving: The robustness of this training
can be tested by running the primitively trained DQN in
Zone D. Although the agent is not expected to successfully
traverse this zone, the primitive training actually acts as a
good initialization and bolsters faster convergence to learn
traversing through Zone D. It also helps in obstacle general-
ization reducing possible overfitting in the DQN.

The Zone C is used to train the agent to recognize and
execute sharp turns. The agent hasnt been tested rigorously
in this Zone but it is an integral part of our future plan. The
final phase of training is expected to include all the zones by



Fig. 4. Blocks Training Arena Isometric view

randomly assigning a zone to the agent during each training
epoch. The agent will thus learn to generalize its policy as
the encountered features would be in random order.

Fig. 5. Wobbles Training Arena

Fig. 6. Woobles Training Arena Top view

Fig. 7. Woobles Training Arena Isometric view

VII. RESULTS

A. Blocks environment trials

In the blocks environment we found that the main bot-
tleneck for the DQN network to successfully recognize an
obstacle came from the field of view of the front centered
camera. Initially if the quadcopter is spawned very close to
a block, we found that it occluded the entire perspective of
the camera frame. In such cases the network had very less
information for choosing an action which would successfully
avoid obstacles in front.

In the early experiments the reward was varied only based
upon the distance to the goal points and collisions. However,
we noticed that when the quadcopter randomly executed
opposite steering angles in a fast succession it would cause
the quadcopter and the camera frame to wobble which might
confuse the network. So we introduced a negative reward
on sharper yaw rates and we observed an improvement in
navigation and decrease in episode lengths.

As one can see, in the initial episodes, the quadcopter
agent is executing sharp turns which results in the roll angle
to range more than +- 30 degrees. After a few iterations, it
successfully learns to associates the negatively reward as the
penalty for such actions. A similar trend can be observed in
the pitch angles where the quad is holding a negative pitch
angle so as to maintain its forward velocity. As the training
continued, we observed that the agent successfully learned
to stabilize itself, reducing the number of sharp action inputs
and executes smooth turns.

B. Wobbles Arena Zone D Trials:

Wobble course was meant to simulate congested situations
that a quadcopter might encounter while navigating in urban
environments. It has a mix of cylindrical and short wall
obstacles and the agent is expected to distinguish them and
learn to fly around them or avoid them. The reward system
in Zone D is different to the blocks approach, here the route
is divided into checkpoints and the quadcopter is rewarded
on reaching the checkpoints while avoiding the obstacles.

The agent is initially trained in Zone A and B as a pre-
training steps to differentiate between walls and cylindrical
columns. The agent had to learn how to differentiate between
near and distant obstacles and also learn to avoid now a



Fig. 8. Blocks Arena Average Reward

Fig. 9. Episode length in Blocks Arena

Fig. 10. Roll angle vs Episode for Blocks Arena

combination of obstacles. We then started to train in the
Zone D. During the training course, it was observed that
the agent was trying to learn various local optimal policies
and morphing them upon failure. By a stochastic policy, we
made sure it doesnt follow the same path while training, as

Fig. 11. Pitch angle vs Episode for Blocks Arena

Fig. 12. Yaw angle vs Episode for Blocks Arena

sometimes it would complete the Zone with a suboptimal
policy. This is essential especially in terms of learning to
recover from fatal states. After 1000 episodes of training,
the quadcopter was able to navigate sub-optimally through
the zones. However, it used to crash with the surrounding
walls in intermediate episodes at times. We suspect that this
might be a result of uniform gradient of the wall observed
in the depth perspective image which confuses the obstacle
detection network.

We also see that the episode reward is directly related
to length of the episode. Thus, the agent successfully tries
to avoid obstacles while moving close to goal in the long
running episodes.

VIII. FUTURE WORK

The directional coordinate error can be merged at the
hidden layers, to let the network get a better idea of its
position in the environment with the environment visual
information. We can also use left and right camera to
get a single concatenated surrounding image and train the
network based on that, to get wider angle observations of
the surrounding [9]. This method can be also extended to
360 degree cameras with photometric error correction. Also



Fig. 13. Woobles Arena Average Reward

Fig. 14. Episode length in Woobles Arena

we can experiment with Dueling DQN which might solve
the issue of obstacle detection present at a far/near distance.

IX. CHALLENGES FACED
A. Modelling real-life complexity with simpler rewards

It was to decide the state and action space for the
navigation problem. We initially decided to tackle it as a
gridworld problem by discretizing the state and action spaces
in their domains but found perception and localization to be
a challenge in the simulation. We finally decided with using
function approximation on visual cues and virtual GPS in
unison. Our action space was discretized to use 3 values of
roll for Wobbles arena and 5 values of yaw-rate for Blocks
Arena.

The reward function had to be designed considering the
subgoals in mind as well as simultaneously keeping it simple
enough to avoid local optimal policies.

B. Software challenges faced

AirSim, being relatively new simulator, had to be studied
at an API level to understand the way in which different
motion primitives were implemented to be able to define our
action space clearly.

As we conducted the training sessions, we observed that
the Simulator would freeze randomly. We diagnosed the
cause of the problem to be Remote Procedural Calls timing
out due to unknown thread delays. As a workaround, we
implemented functions to save the state of the model and
parameters and load this data when running the training
again.

The predefined controllers for motion with fixed yaw were
observed drift over time. We had to implement a secondary
controller correcting this drift at every step to keep the
heading direction of the quadcopter constant.

Since the predefined environments provided were limited
and none of them could be used for intensive training,
we developed our own Wobbles training arena for learning
collision free maneuvers.

X. CONCLUSIONS

This paper presents an implementation of Double Deep
Q Learning to make the quadcopter with a depth camera
learn an acceptable policy to avoid obstacles. The model is
trained in a custom training arena containing different types
of obstacles. The results do show a gradual improvement
in the policy as the training proceeds. However, a large
number of training will be needed to generalize the obstacle
avoidance skills. Locally optimal policies learnt during the
training course does show that collision free navigation is
possible solely using visual cues.

This work is just a step in the direction of camera assisted
fully autonomous navigation using quadcopters. Further im-
provement can be done by adding target displacement as a
part of the state. Enhancements to the current DDQN frame-
work like Dueling Networks can help in faster convergence
of policies.
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