
Distributed Approach for implementation of A3C on TORCS

Ameya Wagh
Robotics Engineering,

WPI, MA 01609
aywagh@wpi.edu

Shakthi Duraimurugan
Robotics Engineering,

WPI, MA 01609
sduraimurugan@wpi.edu

Sanket Gujar
Computer Science,
WPI, MA 01609
srgujar@wpi.edu

Abstract—The performance of a reinforcement learning agent
depends on its exploration by interacting with the environment.
A popular approach to increase the exploration is to implement
Asynchronous advantage actor critic algorithm, but it requires
a multi-core high-performance CPU which can multi-thread
environment processes. We propose a simple scalable distributed
framework to implement the Asynchronous advantage actor-
critic reinforcement algorithm on multiple single or dual core
systems. This framework was experimented on the open source
car racing simulator-TORCS. Based on the results obtained,
we conclude that a distributed approach with a high number
of agents gives more exploration to the agent and reduces the
training time than a single agent running on a single system.
Furthermore, the proposed framework can be experimented with
other deep reinforcement learning algorithms.

Keywords—distributed system; asynchronous advantage actor
critic; TORCS; Reinforcement Learning

I. INTRODUCTION

With ever-increasing computational power, we are recently
seeing a rising trend towards deep reinforcement learning for
complex tasks. The deep neural networks are able to provide
effective models that enable reinforcement learning. A popular
method among them has been the Deep Q-Network. They have
been highly successful in the classic ATARI 2600 games, even
better than humans in some cases.

However, a big limitation of Deep Q-networks is that the
outputs/actions are discrete. While in environments such as car
racing, the action space is continuous. If we try discretizing
it, there arises another problem of high dimensionality. Also,
Deep Q-networks work on the idea that updates can be decor-
related by randomly sampling stored data from different time
steps. This requires a lot of memory and is computationally
expensive.

To solve these drawbacks, Googles DeepMind came up with
an algorithm called Asynchronous advantage actor-critic [1].
Its basic idea is to asynchronously run multiple actor-critic
agents in parallel on multiple instances of the environment.
The algorithm that we propose in this paper uses a distributed
framework of actor-critic rather than multithreading it on a
single system. This means that some old computers running
on outdated CPUs can effectively replace the need for a GPU
or a multi-core CPU. We implement the algorithm on an open
source car racing simulator TORCS. The advantages of this
method are:
• It can be used for continuous action spaces.
• It is not computationally expensive and does not require

huge memory as it has a smaller experience replay.

• It does not require high-end GPUs and CPUs as the
framework is distributed on many systems.

• Highly scalable to any number of systems.
• Increased redundancy as even if one system crashes, the

others would run and continue to update the policy

In the following sections, the paper discusses the re-
lated work done in Asynchronous reinforcement learning and
TORCS simulator, then gives a background of reinforcement
learning, followed by the methodology used and the obtained
results.

II. RELATED WORK

The application of computational intelligence to car rac-
ing games has been investigated in several works. In 1998,
Pyeatt and Howe [2] applied reinforcement learning to learn
racing behaviors in RARS, an open source racing simulator,
precursor of The Open Racing Car Simulator (TORCS) used
in this work. Benoit Chaperot and Colin Faye [3] investigated
methods to improve the back-propagation algorithm to have
the computer controlled bikes performing as well or better
than a human player. D. Perez, G. Recio, Y. Saez, and P.
Isasi [4] developed a controller with fuzzy rules and fuzzy
sets for input and output, which were evolved using a genetic
algorithm in order to optimize lap times, damage taken and
out of track time.

Asynchronous methods for reinforcement learning has been
gaining popularity recently. Gorila framework by (Nair et al.,
2015) [5] uses massively distributed architecture for deep re-
inforcement learning in which agents are distributed. It uses 4
main components, parallel actors, learners, distributed Neural
network and distributed experience buffer. They implemented
the Deep-Q network algorithm (Mnih et al., 2013) [6] in
their distributed architecture on ATARI 2600 games. DistBelief
(Dean et al) [7] paper talks about a software framework to
scale learning models over large number of clusters. They
developed 2 algorithms, Downpour SGD and Sandblaster.
Distributed Deep Q-Learning (Chavez et al., 2015) [8] they
adapted the DistBelief Framework to implement agent which
learns control policies from high-dimensional inputs. (Koutnik
et al.,2014) [9] used neuro evolutionary algorithm in which
they evolved recurrent neural network controller to drive a car
in TORCS game using a compressed. (Tomassini 1999) [10]
uses parallel approach by distributing it on multiple machines
to solve hard problems.

1



III. REINFORCEMENT LEARNING BACKGROUND

A. Off-Policy vs On-policy

Reinforcement learning algorithms can be generally char-
acterized as off-policy where they employ a separate target
behavior policy that is independent of action policy improved
upon. The benefit of this separation is that the target behavior
policy will be more stable by sampling all actions, whereas the
action estimation policy can be greedy, giving more exposure
to the agent. Q learning is an off-policy algorithm as it updates
the Q values without making any assumptions about the actual
policy followed. Whereas, On-policy directly uses the policy
that is being estimated to sample trajectories during training.
[11]

B. Model Free Algorithms

Model-free algorithms are used where there are highdimen-
sional state and action spaces, where the transition matrix
is incredibly expensive in space and time to compute. Mod-
elfree algorithms makes no effort in learning the dynamics
that governs how an agent interacts with the environment,
it directly estimates the optimal policy or value function
by policy iterations or value iterations, but also model-free
algorithms need a large number of training examples for proper
approximations.

C. Experience Replay

During all plays the experience (s, a, r, s) are stored in replay
memory. So, while training the network random mini batches
from the replay memory are used instead of the most recent
transactions. This breaks the similarity of subsequent training
samples, which might drive the network in local minimum.
[12]

D. Actor-Critic model

Actor-critic (AC) implements generalized policy iteration
alternating between a policy evaluation and a policy improve-
ment steps.

A hybrid model which combines policy gradient (known as
actor) and value function (known as critic) together. The actor
produces the action (a) given the current state(s), the actor and
critic are connected in the action, which is a part of the critics
input, which calculates the Q-value.

The critic’s main purpose is to criticize and train the
actor and uses temporal difference to determine whether an
action was worse or better than expected. While learning
this difference is back-propagated through the critic and then
through the actor.

E. A3C (Asynchronous Advantage actor-critic)

1) Asynchronous: A3C utilizes multiple agents with mul-
tiple environment interaction to learn more efficiently. A3C
had a global network and multiple worker agent which have
their own set of network parameter. Each agent interacts with
its own environment simultaneously, so the experience of one
agent is independent of others, making the overall experience
available for training become more diverse.

Fig. 1: Actor Critic Model : AC combines policy gradient
(known as actor) and value function (known as critic), where
critic’s main purpose is to criticize and train the actor and
using temporal difference to determine whether an action was
worse or better than expected. While learning, this temporal
difference is back-propagated through the critic and then
through the actor.

2) Advantage: The advantage helps the agent to determine
how much its action turned out to better or worse than
expected, rather than just using the discounted returns which
only tells if the actions were good or bad. We used discounted
reward as an estimate of Q value for a state and action as we
didnt determine the Q value directly in A3C

Discounted reward : R = γ(r) (1)

Advantage : A = Q(s,a)−V (s) (2)

Advantage Estimate : A = R−V (s) (3)

F. Gym TORCS

Gym-TORCS [13] is a reinforcement learning environment
with Open-AI gym interface for a racing car game Torcs [14].
It is an open-source realistic car racing simulator used as RL
benchmark. The current implication is for only-the single-track
race in practice mode.

IV. METHODOLOGY

A. Framework

The framework consists of an HTTP server and multiple
workers running on different machines connected over inter-
net. Every worker is an HTTP client running an agent with
Asynchronous Advantage Actor critic algorithm referred as
worker model in the above figure. The server has a target
model which is updated by all workers asynchronously i.e.
the start and duration of each episode for every worker is

2



Fig. 2: Front facing camera view from a car of Torcs practice
arena, The Dial on the bottom right represent the magnitude
of actions taken by the agent.

Algorithm 1 Pseudo code for implementation of Server

1: Initialize target model
2: Load target model with stored weights targetweights
3: function ONEVENT(/Upload)
4: targetweights← τ ∗workerweights+(1−τ)×targetweights

5: function ONEVENT(/Download)
6: htt presponse← targetweights

7: function ONEVENT(/)
8: htt presponse← render webpage
9: function EVENT HANDLER

10: handler← register(/U pload,/Download,/)

architecture.pdf

Fig. 3: Architecture of Framework: The Worker models are
interacting with with their own copy of Torcs environment.
The worker agent pushes the network weights to the server
when an episodes end and pulls network weights from the
server before starting a new episode.

independent. All the worker models are trained locally and
simultaneously during the game play using Replay buffer and
send trained weights to the server of end of every episode
or any abrupt program crash. This framework gives liberty
for every worker to have different parameters which increase
exploration and experience due to which local minima can be
avoided

At the start of every Episode, the worker pulls the target
model weights from the server and starts to train on it. At
the end of every episode it pushes the trained worker weights
to the server as well as saves a local copy. This local copy
is used when there is no communication possible between
the server and the worker. In these situations, the workers
would run independently till a connection is re-established.
On every event when worker uploads the model weights the

server updates the target value with a scaling factor τ

targetweights← τ ∗Workerweights+(1− τ)∗ targetweights
(4)

When a new worker joins the network, it gets the updated
weights, thus it starts to explore from the current knowledge
and experience of the policy than starting from scratch.

Algorithm 2 Pseudo code for implementation of Worker

1: Initialize worker model
2: function LOADMODEL return model
3: if pingServer() == true then
4: workerweights← pullFromServer()
5: else
6: workerweights← load previously saved model

7: for episode in Episodes do
8: agent← loadModel()
9: TorcsEnv.reset()

10: for steo in episode do
11: Obs,Reward,doneFlag← TorcsEnv.step(action)
12: action← agent.act(Obs,Reward)
13: if doneFlag == true then
14: localDisk← saveModel()
15: server← pushModel()
16: break

B. Agent

The gym-TORCS runs as a client to a customized version of
TORCS server and communicates over UDP. Every program
communicates to the server on a static port. In this paper
multiple TORCS games were running on different machines
on port 3101. The TORCS game provides several sensors as
observation and different controls as action.

1) Observation space: The observation space of gym-
TORCS contains vision input as well as many sensors which
can be seen in Table 1 of Appendix.

In the scope of this experiment, only two variables are used
namely, angle i.e. angle made by the heading of the car to
the center of the track and trackPos i.e. the position of the
car from the track axis. The angle varies from [-, ] and the
trackPos ranges from [-1,1] -1 being the car is on extreme
right edge.

2) Action-Space: The TORCS provides a no of variables
to control the car using its UDP client which can be seen in
Table 2 of Appendix.

The action space consists of just one variable which is the
steering angle which lies in the range -1 to 1. The acceleration
and breaking are automatic and are a function of steering
angle. i.e. when the car turns it decelerates and when it is
going straight it accelerates accordingly.

3) Design of reward function: We initially started with a
simple reward function which was the velocity of the car along
the track directions Vx, time for which the agent stays on the

3



track t and negative rewards for collisions.

Rt =Vx + t (5)

We observed that the agents get stuck in local minimums
by hitting accelerator and hit the edges of the tracks. This was
dealt by [15] by maximize longitudinal velocity Vx ∗ cos(θ),
minimize transverse velocity Vx∗sin(θ) and maintain the agent
in the center of the track.

Rt =Vx cos(θ)−Vx sin(θ)−VxtrackPos (6)

4) Randomization process: To avoid local minima and to
increase exploration a random action value is given from a
normally distributed action space. To control the frequency
of random actions another random number is selected from
range (0,1) and compared against exploration factor . If the
value is greater than a random action is taken from normally
distributed action space else the prediction of actor is used as
action.

C. Web Interface

The interface is used to monitor the process displayed on a
webpage. Fig 4. shows that it can display the Workers attached
to the server, Maximum reward gained, no of episodes elapsed
and server uptime with configuration messages and logs.

The webpage also plots a real-time graph of the global
rewards vs global no of episodes elapsed shown in Fig 5.
Global rewards indicate the rewards by all the workers together
and global episodes are episodes elapsed by all the workers
together.

Fig. 4: Webpage Dashboard: The workers, Max Reward,
Episodes, Up Time, Parameters of the network and Activity
informations are displayed to the user.

D. Evaluation Protocol

We would evaluate the rewards accumulated by a two agent
system vs. a single agent system, and assess the factor by
which rewards accumulated increases from one system to the
other. We would also check if this factor corresponds to the
results obtained in the implementation of A3C in Table 2 of
paper [1].

Fig. 5: Webpage Dashboard: Plot of Global Reward vs Global
Episodes

Fig. 6: Plot of rewards vs epsiodes for single-agent(green) and
two-agent systems(blue)

V. RESULTS

Given below are the graphs of the rewards of the algo-
rithm vs elapsed episodes performed with one agent and two
simultaneous agents. It was performed on dual core Intel i7
CPUs. It can be observed that in a span of 250 episodes the
experiment performed with two simultaneous agents shows
significant improvement.

The practice track in the Torcs game over which the agents
were trained consists of steep turns and straight roads. The
game starts with a turn followed by a road. Thus, for an
untrained agent it becomes very difficult to learn to maneuver
a turn right at the beginning. As the time elapses, the agent
progresses to make a turn and drive straight and will crash
only at the next turn.

It can be seen in Fig 6. that there are significant peaks after
150 episodes in the two-agent system. These peaks correspond
to successful maneuvers of the first hard turn. As the agent
progresses to maneuver the car it sometimes barely makes the
turn aided by Random explorations. The frequency of these
peaks increases over time finally learning to correctly take a
turn. The single-agent experiment was not able to reach that
level in 250 episodes.

The downward peaks in the graph signify the random
actions taken in the exploration stem causing the car to crash
at the beginning.

It can also be observed that both the experiments perform

4



similarly at the start of the training but the experiment with
two-agents learns faster as it has two independent agents to
explore the same observation space signifying the effect of
parallelization.

Fig. 7: Plot of Loss function of critic network (Value function)
over training time

The critic is a regression mode which learns to gives value
of every observation state. The figure 7 show the trend of
decrease in loss over time of the critic mode stating the
improvement in the performance of the critic to evaluate a
given observation.

From Fig 6. we can observe that the reward gained by two-
agent system in 250 episodes increased by approximately a
factor of 2 which agrees with the result obtained in Table 2
of paper[1].

VI. CONCLUSION AND FUTURE SCOPE

We presented a distributed approach to perform A3C on
open source car racing environment TORCS and showed that
we were able to train neural network agents to drive the car
in the mentioned environment by gaining maximum rewards.
We performed two experiments on the environment using the
distributed approach on single-agent and two-agent with dual
core Intel CPUs, From the above results we conclude that
multiple asynchronous independent agent running parallel on
distributed systems learn faster. The two workers had different
parameters which increased the exploration.

This distributed approach does not limit on no of workers
and thus can be scaled largely. As the no of workers increase
the exploration of the environment increases which makes the
agent less likely to get stuck in local minimums.

The downside of these systems is latency due to commu-
nications and IO operations. This approach is suitable for
clusters with low performance single or dual core CPUs, but
it can be replaced by a single high performance multithreaded
system.

We can also combine other reinforcement learning method-
ologies in this distributed approach to make them asyn-
chronous.

VII. ACKNOWLEDGMENT

We would like to thank Prof. Dmitry Korkin for his valuable
guidance and suggestions.

REFERENCES

[1] Volodymyr Mnih, Adri‘a Puigdom‘enech Badia, Mehdi Mirza, Alex
Graves, Timothy P. Lillicrap, Tim Harley, David Silver, and Koray
Kavukcuoglu, ”Asynchronous methods for deep reinforcement learning”,
In Proceedings of the 33nd International Conference on Machine Learn-
ing, ICML 2016, New York City, NY, USA, June 19-24, 2016, pages
19281937, 2016.

[2] L. D. Pyeatt and A. E. Howe, Learning to race: Experiments with a
simulated race car, in Proceedings of the Eleventh International Florida
Artificial Intelligence Research Society Conference. AAAI Press, 1998,
pp. 357361

[3] B. Chaperot and C. Fyfe, Improving artificial intelligence in a motocross
game, in IEEE Symposium on Computational Intelligence and Games,
2006.

[4] D. Perez, G. Recio, Y. Saez, and P. Isasi, Evolving a fuzzy controller
for a car racing competition, in Computational Intelligence and Games,
2009. CIG 2009. IEEE Symposium on, Sept. 2009, pp. 263 270

[5] A. Nair, P. Srinivasan, S. Blackwell, C. Alcicek, R. Fearon, A. D. Maria,
V. Panneershelvam, M. Suleyman, C. Beattie, S. Petersen, S. Legg, V.
Mnih, K. Kavukcuoglu, and D. Silver, Massively Parallel Methods for
Deep Reinforcement Learning, [1507.04296] Massively Parallel Methods
for Deep Reinforcement Learning, 16-Jul-2015. [Online]. Available:
https://arxiv.org/abs/1507.04296. [Accessed: 03-Dec-2017].

[6] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou,
I., Wierstra, D. and Riedmiller, M. (2013). Playing Atari with
Deep Reinforcement Learning. [online] Arxiv.org. Available at:
https://arxiv.org/abs/1312.5602v1 [Accessed 4 Dec. 2017].

[7] J. Dean, G.S. Corrado, R. Monga, K. Chen, M. Devin, Q.V. Le, M.Z.
Mao, M.A. Ranzato, A. Senior, P. Tucker, K. Yang, A. Y. Ng., Large
Scale Distributed Deep Networks, NIPS, 2012

[8] Ong, H., Chavez, K. and Hong, A. (2015). Distributed Deep Q-Learning.
[online] Arxiv.org. Available at: https://arxiv.org/abs/1508.04186 [Ac-
cessed 4 Dec. 2017].

[9] Koutnk, Jan, Schmidhuber, Jrgen, and Gomez, Faustino. Evolving deep
unsupervised convolutional networks for vision-based reinforcement
learning. In Proceedings of the 2014 conference on Genetic and evo-
lutionary com- putation, pp. 541548. ACM, 2014.

[10] Tomassini, Marco. Parallel and distributed evolutionary al- gorithms: A
review. Technical report, 1999.

[11] Emami,P.(2017) http://pemami4911.github.io/blog/2016/08/21/ddpg-rl.
html [Blog].

[12] Matiisen,T.(2017).https://www.intelnervana.com/
demystifying-deep-reinforcement-learning/ [Blog].

[13] Gym TORCS.https://github.com/ugo-nama-kun/gym torcs [Online]
[14] The open racing car simultaor website, http://torcs.sourceforge.net/ [On-

line]
[15] Lau, B. (2016). Using Keras and Deep Determinis-

tic Policy Gradient to play TORCS.[Blog] Available
at:https://yanpanlau.github.io/2016/10/11/Torcs-Keras.html [Accessed 4
Dec. 2017].

VIII. APPENDIX

5

http://pemami4911.github.io/blog/2016/08/21/ddpg- rl.html
http://pemami4911.github.io/blog/2016/08/21/ddpg- rl.html
https://www.intelnervana.com/demystifying-deep- reinforcement-learning/
https://www.intelnervana.com/demystifying-deep- reinforcement-learning/
https://github.com/ugo-nama-kun/gym_torcs
http://torcs.sourceforge.net/


TABLE I: Different sensor outputs from TORCS environment

Name Range(unit) Description
angle [-,+] (rad) Angle between the car

direction and the direction of
the track axis.

speedX (,+) (km/h) Speed of the car along
the longitudinal axis of

the car.
speedY (,+) (km/h) Speed of the car along

the transverse axis of
the car.

speedZ (,+) (km/h) Speed of the car along
the Z axis of the car.

trackPos (,+) Distance between the
car and the track axis.

The value is normalized w.r.t
to the track width: it is 0
when car is on the axis,

-1 when the car is on
the right edge of the

track and +1 when it is
on the left edge of the
car. Values greater than

1 or smaller than -1
means that the car is
outside of the track.

TABLE II: Different controls for the TORCS environment

Name Range(unit) Description
accel [0,1] Virtual gas pedal (0

means no gas, 1 full gas).
brake [0,1] Virtual brake pedal (0

means no brake, 1 full brake).
steering [-1,1] Steering value: -1 and

+1 means respectively
full right and left, that

corresponds to an angle
of 0.366519 rad.

6


	Introduction
	RELATED WORK
	REINFORCEMENT LEARNING BACKGROUND
	Off-Policy vs On-policy
	Model Free Algorithms
	Experience Replay
	Actor-Critic model
	A3C (Asynchronous Advantage actor-critic)
	Asynchronous
	Advantage

	Gym TORCS

	METHODOLOGY
	Framework
	Agent
	Observation space
	Action-Space
	Design of reward function
	Randomization process

	Web Interface
	Evaluation Protocol

	RESULTS
	CONCLUSION AND FUTURE SCOPE
	ACKNOWLEDGMENT
	References
	APPENDIX

